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Abstract

We considered an extension of the standard functional for the Einstein–Dirac equation where the Dirac
operator is replaced by the square of the Dirac operator and a real parameter controlling the length of
spinors is introduced. For one distinguished value of the parameter, the resulting Euler–Lagrange equations
provide a new type of Einstein–Dirac coupling. We establish a special method for constructing global
smooth solutions of a newly derived Einstein–Dirac system called the CL-Einstein–Dirac equation of type
II (see Definition 3.1).
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Let (Qn,r , η) be an n-dimensional (connected smooth) pseudo-Riemannian manifold, where
the index r is the number of negative eigenvalues of the metric η. Assume that (Qn,r , η) is space-
and time-oriented and has a fixed spin structure [1]. For simplicity, we will often write Q to mean
Qn,r . Let Σ (Q) = Σ (Q)η denote the spinor bundle of (Qn,r , η) equipped with the Spin+(n, r)-
equivariant nondegenerate complex product 〈·, ·〉 = 〈·, ·〉η, and let (·, ·) = Re〈·, ·〉 denote the
real part of 〈·, ·〉. Let Ric = Ricη and S = Sη be the Ricci tensor and the scalar curvature of
(Qn,r , η), respectively. Let D = Dη be the Dirac operator acting on sections ψ ∈ Γ (Σ (Q)) of
the spinor bundle Σ (Q). Then the standard functional for the Einstein–Dirac equation is given
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by

W1(η, ψ) =

∫ {
aSη + b + εν1(ψ,ψ)− ε((

√
−1)r Dηψ,ψ)

}
µη, (1.1)

where a, b, ε, ν1 ∈ R, ε 6= 0, are real numbers and µη is the volume form of (Qn,r , η). The
Euler–Lagrange equations (called the Einstein–Dirac equation) are the Dirac equation

(
√

−1)r Dψ = ν1ψ (1.2)

and the Einstein equation

a

{
Ric −

S

2
η

}
−

b

2
η =

ε

4
T1 (1.3)

coupled via a symmetric tensor field T1,

T1(X, Y ) =

(
(
√

−1)r {X · ∇Yψ + Y · ∇Xψ}, ψ
)
, (1.4)

where X, Y are vector fields on Qn,r and the dot “·” indicates the Clifford multiplication. Observe
that the system (1.2)–(1.4) contains four differential operators, namely, the spin connection ∇,
the Dirac operator D, the Ricci tensor Ric and the scalar curvature S. The spin connection and
the Dirac operator act on spinor fields and are operators of first-order, while the Ricci tensor and
the scalar curvature are second-order operators acting on metrics. Therefore, it is natural to ask
whether one can derive such Euler–Lagrange equations from the functional

W2(η, ψ) =

∫ {
aSη + b + εν2(ψ,ψ)− ε((Dη ◦ Dη)(ψ), ψ)

}
µη, ν2 ∈ R, (1.5)

that generalize the system (1.2)–(1.4) and all the involved operators acting on spinor fields are
of second-order. In Section 2 we will show that the answer to the question is positive and (1.5)
yields in fact the following system (see Theorem 2.1):

D2ψ = ν2ψ, a

{
Ric −

S

2
η

}
−

b

2
η =

ε

4
T2, (1.6)

where T2 is a symmetric tensor field defined by

T2(X, Y ) = (X · ∇Y (Dψ)+ Y · ∇X (Dψ),ψ)

+ (−1)r (X · ∇Yψ + Y · ∇Xψ, Dψ) . (1.7)

In this paper the system (1.2)–(1.4) is called the classical Einstein–Dirac equation of type I [5–7]
and the system (1.6) and (1.7) the classical Einstein–Dirac equation of type II.

Let us turn to another situation where a real parameter controlling the length of spinors is
introduced. Let ϕ = ϕη be a spinor field on (Qn,r , η) such that either (ϕ, ϕ) > 0 at all points or
(ϕ, ϕ) < 0 at all points. Fix a shorthand notation

ϕk
:= (σϕ, ϕ)kϕ, ϕ0

:= ϕ,

where k ∈ R is a real number and σ = σϕ ∈ R is a constant defined by

σ = 1 if (ϕ, ϕ) > 0 and σ = −1 if (ϕ, ϕ) < 0.



E.C. Kim / Journal of Geometry and Physics 56 (2006) 2573–2591 2575

Combining the functional (1.1) with (1.5), we extend the spinorial part as

W (η, ϕ) =

∫ {
aSη + b + εν(σϕk, ϕk)− ε(σ Pη(ϕ

k), ϕk)
}
µη, ν ∈ R, (1.8)

where Pη = (
√

−1)r Dη or Pη = Dη ◦ Dη, and look at the Euler–Lagrange equations derived
from (1.8). We will show in Section 3 (see Theorem 3.1) that, when k 6= −

1
2 , the Euler–Lagrange

equations of (1.8) are actually equivalent to the system (1.2)–(1.4) or to the system (1.6) and (1.7)
depending on a choice of Pη. However, in the distinguished case k = −

1
2 in which the length

|ϕk
| = ±1 becomes constant, we are led to a new Einstein–Dirac system, i.e.,

Pηψ = fψ, a

{
Ric −

S

2
η

}
−

c

2
η =

ε

4
T −

ε

2
f η, a, c, ε ∈ R, (1.9)

where ψ is of constant length |ψ | = ±1 and f : Qn,r
−→ R is a real-valued function and T is

a symmetric tensor field defined by

T (X, Y ) =

(
σ(

√
−1)r {X · ∇Yψ + Y · ∇Xψ}, ψ

)
(1.10)

if Pη = (
√

−1)r Dη and by

T (X, Y ) = σ (X · ∇Y (Dψ)+ Y · ∇X (Dψ),ψ)

+ σ(−1)r (X · ∇Yψ + Y · ∇Xψ, Dψ) (1.11)

if Pη = Dη ◦ Dη, respectively. The system (1.9)–(1.11) will be called the
CL-Einstein–Dirac equation of type I if Pη = (

√
−1)r Dη and the CL-Einstein–Dirac equation of

type II if Pη = Dη◦Dη, respectively (“CL” means the “constant length” of spinors). A non-trivial
spinor field ψ on (Qn,r , η) is called a CL-Einstein spinor of type I (resp. type II) if it satisfies
the CL-Einstein–Dirac equation of type I (resp. type II). It will be pointed out (see Remark 3.1)
why one cannot weaken the “constant length” condition for CL-Einstein spinors.

Sections 4 and 5 of the paper are devoted to establishing a special method for constructing
global (smooth) solutions of the CL-Einstein–Dirac equation of type II. The essential idea of this
construction is the fact that, under conformal change of metrics, the CL-Einstein–Dirac equation
of type II behave in a relatively stable way (more stable than the CL-Einstein–Dirac equation of
type I and both types of classical Einstein–Dirac equation). More precisely, we show in Section 4
that if (Qn,r , η) admits a non-trivial spinor field ψ , called a reduced weakly parallel spinor,
satisfying the differential equation in Definition 4.3, then over the manifold (Qn,r , η = euη)

with conformally changed metric η = euη the pullback ψ of ψ becomes a CL-Einstein spinor
of type II (see Theorem 4.2). Parallel spinors [8] are trivial examples for reduced weakly parallel
spinors. In Section 5 we will provide examples for reduced weakly parallel spinors that are not
parallel spinors (see Theorem 5.2).

2. Coupling of the square of the Dirac operator to the Einstein equation

We first recall the process of obtaining the classical Einstein–Dirac equation of type I in
pseudo-Riemannian signature [6,7]. Applying the process to the behaviour of the square of the
Dirac operator under change of metrics, we then derive the classical Einstein–Dirac equation of
type II.
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Let h be a symmetric (0, 2)-tensor field on (Qn,r , η), and let H be the (1, 1)-tensor field
induced by h via h(X, Y ) = η(X, H(Y )). Then the tensor field η defined by

η(X, Y ) = η(X, eH (Y )) = η(e
H
2 (X), e

H
2 (Y )) (2.1)

is a pseudo-Riemannian metric of the same index r . Let K := e
H
2 and let Λ be the (1, 2)-tensor

field defined by

2η(Λ(X, Y ), Z) = η
(

Z , K {(∇
η

K −1(X)
K −1)(Y )} − K {(∇

η

K −1(Y )
K −1)(X)}

)
+ η

(
Y, K {(∇

η

K −1(Z)
K −1)(X)} − K {(∇

η

K −1(X)
K −1)(Z)}

)
+ η

(
X, K {(∇

η

K −1(Z)
K −1)(Y )} − K {(∇

η

K −1(Y )
K −1)(Z)}

)
.

Then the Levi-Civita connections ∇
η and ∇

η are related by

∇
η

K −1(X)

(
K −1(Y )

)
= K −1

(
∇
η

K −1(X)
Y
)

+ K −1
{Λ(X, Y )} . (2.2)

Let K̂ : Σ (Q)η −→ Σ (Q)η be a natural isomorphism preserving the inner product of spinors
and the Clifford multiplication with

〈K̂ (ϕ), K̂ (ψ)〉η = 〈ϕ,ψ〉η, (K X) · (K̂ψ) = K̂ (X · ψ) (2.3)

for all X ∈ Γ (T (Q)), ϕ, ψ ∈ Γ (Σ (Q)η), where the dot “·” in the latter relation indicates the
Clifford multiplication with respect to η and η, respectively. Let (E1, . . . , En) be a local η-
orthonormal frame field on (Qn,r , η). For brevity we introduce the notation χ(i) := η(Ei , Ei )

and χ(i1 . . . is) := χ(i1)χ(i2) · · ·χ(is) for 1 ≤ s ≤ n. Then, because of (2.2), the spinor
derivatives ∇

η,∇η are related by [4]{
K̂ ◦ ∇

η

K −1(E j )
◦
(
K̂
)−1

}
(ψ) = ∇

η

K −1(E j )
ψ +

1
4

n∑
k,l=1

χ(kl)Λ jkl Ek · El · ψ, (2.4)

where Λ jkl := η(Λ(E j , Ek), El), and the Dirac operators Dη, Dη by{
K̂ ◦ Dη ◦

(
K̂
)−1

}
(ψ)

=

n∑
i=1

χ(i)Ei · ∇
η

K −1(Ei )
ψ +

1
4

n∑
j,k,l=1

χ( jkl)Λ jkl E j · Ek · El · ψ

=

n∑
i=1

χ(i)Ei · ∇
η

K −1(Ei )
ψ −

1
2

n∑
j,k=1

χ( jk)Λ j jk Ek · ψ

+
1
2

n∑
j<k<l

χ( jkl)(Λ jkl + Λkl j + Λl jk)E j · Ek · El · ψ. (2.5)

In order to compute the infinitesimal variation of the Dirac operator, we consider a one-
parameter family of metrics of index r ,

ηt (X, Y ) := η(X, et H (Y )) = η(e
t H
2 (X), e

t H
2 (Y )), ηo := η, t ∈ R, (2.6)
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which is generated by a symmetric (0, 2)-tensor field h on (Qn,r , η). Let Λt be the (1, 2)-tensor
in (2.2) determined by the pair (∇ηt ,∇η) of the Levi-Civita connections (with Kt = e

t H
2 ). Let

Ωt be a 3-form generated by the tensor Λt via

Ωt (X, Y, Z) = η(Λt (X, Y ), Z)+ η(Λt (Y, Z), X)+ η(Λt (Z , X), Y ). (2.7)

Then direct computations show:

Lemma 2.1.
d
dt

∣∣∣∣
t=0

{Λt (X, Y )− Λt (Y, X)} = −
1
2
(∇

η
X H)(Y )+

1
2
(∇

η
Y H)(X),

d
dt

∣∣∣∣
t=0
η(Λt (X, Y ), Z) =

1
2
η((∇

η
Y H)(X), Z)−

1
2
η((∇

η
Z H)(X), Y ),

d
dt

∣∣∣∣
t=0

Ωt (X, Y, Z) = 0.

Applying Lemma 2.1 to (2.5), we arrive at the variation formula of the Dirac operator:

d
dt

∣∣∣∣
t=0

{
K̂t ◦ Dηt ◦

(
K̂t
)−1

}
(ψ)

= −
1
2

n∑
j=1

χ( j)h(E j ) · ∇
η
E j
ψ −

1
4

divη(h) · ψ +
1
4

gradη(Trη(h)) · ψ. (2.8)

Recall [1] that for the standard complex product 〈·, ·〉 on the spinor bundle Σ (Q), the relation

〈X · ϕ,ψ〉 + (−1)r 〈ϕ, X · ψ〉 = 0 (2.9)

holds for all vector fields X and for all spinor fields ϕ,ψ . Taking the real part of (2.9) gives some
simple but crucial identities:

((
√

−1)r X · ψ,ψ) = 0, (2.10)

(X · ψ, Y · ψ) = (−1)rη(X, Y )(ψ,ψ), (2.11)

(X · Y · ψ,ψ) = −η(X, Y )(ψ,ψ). (2.12)

Let Sym(0, 2) denote the space of all symmetric (0, 2)-tensor fields on (Qn,r , η), and
let ((·, ·)) = ((·, ·))η denote the naturally induced metric on the space Sym(0, 2). Denote
by ψηt = (K̂t )

−1(ψ) ∈ Γ (Σ (Q)ηt ) the pullback of ψ = ψη ∈ Γ (Σ (Q)η) via natural
isomorphism K̂t (see (2.3)). Then (2.8) and (2.10) together give the formula (1.4) for the first
type energy–momentum tensor T1:

d
dt

∣∣∣∣
t=0

(
(
√

−1)r Dηtψηt , ψηt

)
= −

1
4
((T1, h)), (2.13)

where

T1(X, Y ) =

(
(
√

−1)r {X · ∇
η
Yψ + Y · ∇

η
Xψ}, ψ

)
. (2.14)

Moreover, using (2.8) and (2.9) and noting that (
√

−1)r Dη is symmetric with respect to the
L2-product, we can derive the formula (1.7) for the second type energy–momentum tensor T2.
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Lemma 2.2. Let U be an open subset of Qn,r with compact closure, and let h be a symmetric
tensor field with support in U. Then for any spinor field ψ on (Qn,r , η), we have

d
dt

∣∣∣∣
t=0

∫
U

(
(Dηt ◦ Dηt )(ψηt ), ψηt

)
µη = −

1
4

∫
U
((T2, h))µη,

where

T2(X, Y ) =
(
X · ∇

η
Y (Dηψ)+ Y · ∇

η
X (Dηψ),ψ

)
+ (−1)r

(
X · ∇

η
Yψ + Y · ∇

η
Xψ, Dηψ

)
. (2.15)

Proof. Letting D = Dη and ψ = ψη, we compute

d
dt

∣∣∣∣
t=0

∫
U

(
(Dηt ◦ Dηt )(ψηt ), ψηt

)
ηt
µη

=

∫
U

(
d
dt

∣∣∣∣
t=0
(K̂t Dηt )(Dψ)ηt , ψ

)
µη +

∫
U

(
Dη

(
d
dt

∣∣∣∣
t=0
(K̂t Dηt )(ψηt )

)
, ψ

)
µη

=

∫
U

(
−

1
2

n∑
j=1

χ( j)h(E j ) · ∇
η
E j
(Dψ)−

1
4

divη(h) · (Dψ)

+
1
4

gradη(Trη(h)) · (Dψ),ψ

)
µη

+

∫
U

(
(
√

−1)3r

{
−

1
2

n∑
j=1

χ( j)h(E j ) · ∇
η
E j
ψ −

1
4

divη(h) · ψ

+
1
4

gradη(Trη(h)) · ψ

}
, (

√
−1)r Dηψ

)
µη

= −
1
2

∫
U

(
n∑

i=1

χ(i)h(Ei ) · ∇
η
Ei
(Dψ),ψ

)
µη −

(−1)r

2

×

∫
U

(
n∑

i=1

χ(i)h(Ei ) · ∇
η
Ei
ψ, Dψ

)
µη

= −
1
4

∫
U
((T2, h))µη. �

We further need to recall the well-known formulas for the variation of the volume form and the
scalar curvature, which one easily obtains from (2.6) and from the pseudo-Riemannian version
of the second formula in Proposition 2.2 of [7].

Lemma 2.3 (See [3]). Let U be an open subset of Qn,r with compact closure, and let h be a
symmetric tensor field with support in U. Then we have

d
dt

∣∣∣∣
t=0
µηt =

1
2
((η, h))µη,

d
dt

∣∣∣∣
t=0

∫
U

Sηtµη = −

∫
U
((Ricη, h))µη.
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Making use of Lemmas 2.2 and 2.3 and following the proof of Theorem 2.1 of [6], we now
establish the main result of this section.

Theorem 2.1. Let Qn,r be a pseudo-Riemannian spin manifold. Fix the notation Pη to mean
either Pη = (

√
−1)r Dη or Pη = Dη ◦ Dη. Then, a pair (ηo, ψo) is a critical point of the

Lagrange functional

W (η, ψ) =

∫
U

{
aSη + b + εν(ψη, ψη)η − ε(Pη(ψ), ψ)η

}
µη, a, b, ε, ν ∈ R, ε 6= 0,

for all open subsets U of Qn,r with compact closure if and only if (ηo, ψo) is a solution of the
following system of differential equations:

Pη(ψ) = νψ and a

{
Ricη −

1
2

Sηη

}
−

b

2
η =

ε

4
T, (2.16)

where T is a symmetric tensor field defined by (2.14) or by (2.15) depending on a choice of Pη.

We close the section with generalizing Definition 2.1 and 3.1 of [6].

Definition 2.1. (i) A non-trivial spinor field ψ on (Qn,r , η), n ≥ 3, is called an Einstein spinor
of type I for the eigenvalue (

√
−1)3rν1, ν1 ∈ R, if it is a solution of the system (1.2)–(1.4).

(ii) A non-trivial spinor field ψ on (Qn,r , η), n ≥ 3, is called an Einstein spinor of type II for
the eigenvalue ν2 ∈ R if it is a solution of the system (1.6) and (1.7).

Definition 2.2. Assume that a(n − 2)S + bn(a, b ∈ R) does not vanish at any point of
(Qn,r , η), n ≥ 3. A non-trivial spinor fieldψ on (Qn,r , η) is called a weak Killing spinor (briefly,
WK-spinor) with WK-number (

√
−1)3rν1 6= 0, ν1 ∈ R, if ψ is a solution of the differential

equation

∇Xψ = (
√

−1)3rβ(X) · ψ + nα(X)ψ + X · α · ψ, (2.17)

where α is a 1-form and β is a symmetric tensor field defined by

α =
a(n − 2)dS

2(n − 1){a(n − 2)S + bn}

and

β =
2ν1

a(n − 2)S + bn

〈
a

{
Ric −

1
2

Sη

}
−

b

2
η

〉
,

respectively.

Remark 2.1. As in the Riemannian case (see Theorem 3.1 of [6]), any pseudo-Riemannian WK-
spinorψ with positive length (ψ,ψ) > 0 (resp. negative length (ψ,ψ) < 0) becomes an Einstein
spinor of type I: Since

d
(

(ψ,ψ)

a(n − 2)S + bn

)
= 0,

it follows that

(ψ,ψ)

a(n − 2)S + bn
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is constant on Qn,r . One verifies easily that Eqs. (1.2)–(1.4) are indeed satisfied with

ε = −
a(n − 2)S + bn

ν1(ψ,ψ)
.

Remark 2.2. Evidently, the solution space of the type I classical Einstein–Dirac equation is a
subspace of that of the type II classical Einstein–Dirac equation. Hence it is of interest to find
such Einstein spinors of type II that are not Einstein spinors of type I. Let (Qn,r , η) admit a
spinor field ψ satisfying the differential equation [2]

∇Xψ = −(
√

−1)3r+1 ν1

n
X · ψ.

Then the metric η is necessarily Einstein with scalar curvature

S = (−1)r+1 4(n − 1)ν2
1

n
.

If we choose the parameters a and b so as to be related by

b = −
a(n − 2)

n
S = (−1)r

4a(n − 1)(n − 2)ν2
1

n2 ,

then ψ satisfies (1.6) and (1.7) with

ν2 = (−1)r+1ν2
1 and a

{
Ric −

S

2
η

}
−

b

2
η =

ε

4
T2 = 0.

However, ψ does not satisfy (1.2)–(1.4) in general.

3. Derivation of the CL-Einstein–Dirac equations

Let ϕ = ϕη be a spinor field on (Qn,r , η) such that either (ϕ, ϕ) > 0 at all points or (ϕ, ϕ) < 0
at all points. We use the simplifying notation

ϕk
:= (σϕ, ϕ)kϕ, k ∈ R,

where σ = σϕ ∈ R is a constant defined by

σ = 1 if (ϕ, ϕ) > 0 and σ = −1 if (ϕ, ϕ) < 0.

Via direct computations, one verifies easily the following variation formulas.

Lemma 3.1. Let U be an open subset of (Qn,r , η) with compact closure, and let ϕc be a spinor
field with support in U. Then we have

(i)

d
dt

∣∣∣∣
t=0
(σ (ϕ + tϕc)

k, (ϕ + tϕc)
k) = 2(2k + 1)(σϕ, ϕ)2k(σϕ, ϕc),
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(ii)

d
dt

∣∣∣∣
t=0

∫
U

(
σ Pη(ϕ + tϕc)

k, (ϕ + tϕc)
k
)
µη

= 4k
∫

U

(
σ Pη{(σϕ, ϕ)

kϕ}, (σϕ, ϕ)k−1ϕ
)
(σϕ, ϕc)µη

+ 2
∫

U

(
σ Pη{(σϕ, ϕ)

kϕ}, (σϕ, ϕ)kϕc

)
µη,

where Pη = (
√

−1)r Dη or Pη = Dη ◦ Dη.

Theorem 3.1. Let Qn,r be a pseudo-Riemannian spin manifold. Consider the Lagrange
functional

W (η, ϕ) =

∫
U

{
aSη + b + εν(σϕk, ϕk)η − ε(σ Pη(ϕ

k), ϕk)η

}
µη

over open subsets U of Qn,r with compact closure, where a, b, k, ε, ν ∈ R, ε 6= 0, are real
numbers.
(i) In case of 2k + 1 6= 0, a pair (η∗, ϕ∗) is a critical point of W (η, ϕ) for all open subsets
U of Qn,r with compact closure if and only if (η∗, ϕ∗) is a solution of the following system of
differential equations:

Pη(ϕ
k) = νϕk and a

{
Ricη −

1
2

Sηη

}
−

b

2
η =

ε

4
T, (3.1)

where T is a symmetric tensor field defined by

T (X, Y ) = T1(X, Y ) =

(
σ(

√
−1)r {X · ∇

η
Yϕ

k
+ Y · ∇

η
Xϕ

k
}, ϕk

)
(3.2)

if Pη = (
√

−1)r Dη and defined by

T (X, Y ) = T2(X, Y ) = σ
(

X · ∇
η
Y (Dηϕ

k)+ Y · ∇
η
X (Dηϕ

k), ϕk
)

+ σ(−1)r
(

X · ∇
η
Yϕ

k
+ Y · ∇

η
Xϕ

k, Dηϕ
k
)

(3.3)

if Pη = Dη ◦ Dη, respectively.
(ii) In the case of 2k + 1 = 0, a pair (η∗, ϕ∗) is a critical point of W (η, ϕ) for all open subsets
U of Qn,r with compact closure if and only if (η∗, ϕ∗) is a solution of the following system of
differential equations:

Pη(ϕ
k) = f ϕk (3.4)

and

a

{
Ricη −

1
2

Sηη

}
−

b + εν

2
η =

ε

4
T −

ε

2
f η, (3.5)

where f : Qn,r
−→ R is a real-valued function and T is a symmetric tensor field defined by

(3.2) or by (3.3) depending on a choice of Pη.
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Proof. Let h be a symmetric tensor field with support in U , and let ϕc be a spinor field with
support in U . Let ηt be a one-parameter family of metrics in (2.6). Using Lemma 3.1, we compute
at t = 0:

d
dt

W (ηt , ϕ + tϕc) =
d
dt

W (ηt , ϕ)+
d
dt

W (η, ϕ + tϕc)

=
d
dt

∫
U

aSηtµη +
d
dt

∫
U

aSηµηt +
d
dt

∫
U

bµηt +
d
dt

∫
U
εν(σϕk, ϕk)µηt

−
d
dt

∫
U
ε(σ Pη(ϕ

k), ϕk)µηt −
d
dt

∫
U
ε(σ Pηt (ϕ

k
ηt
), ϕk

ηt
)µη

+
d
dt

∫
U
εν(σ (ϕ + tϕc)

k, (ϕ + tϕc)
k)µη −

d
dt

∫
U
ε(σ Pη(ϕ + tϕc)

k, (ϕ + tϕc)
k)µη

=

∫
U

((
−aRicη +

a

2
Sηη +

b

2
η +

ε

4
T +

εν

2
(σϕk, ϕk)η −

ε

2
(σ Pη(ϕ

k), ϕk)η, h

))
µη

+

∫
U

(
2εν(2k + 1)(σϕ, ϕ)2k

· σϕ − 4εk(σϕ, ϕ)−1(σ Pη(ϕ
k), ϕk) · σϕ

− 2ε(σϕ, ϕ)k · σ Pη(ϕ
k), ϕc

)
µη.

It follows that a pair (η∗, ϕ∗) is a critical point of the functional W (η, ϕ) for all open subsets U
of Qn,r with compact closure if and only if it is a solution of the equations

ε

4
T = aRicη −

a

2
Sηη −

b

2
η −

εν

2
(σϕk, ϕk)η +

ε

2
(σ Pη(ϕ

k), ϕk)η (3.6)

and

Pη(ϕ
k) = −2k(σϕ, ϕ)−2k−1(σ Pη(ϕ

k), ϕk)ϕk
+ ν(2k + 1)ϕk . (3.7)

Inner product of (3.7) with σ · ϕk gives

0 = (2k + 1)
{
(σ Pη(ϕ

k), ϕk)− ν(σϕk, ϕk)
}
, (3.8)

and so, in the case of 2k + 1 6= 0, (3.6)–(3.8) imply part (i) of the theorem. Now we consider the
other case 2k + 1 = 0. In this case, (σϕk, ϕk) = (σϕ, ϕ)2k+1

= 1 and hence (3.7) gives

Pη(ϕ
k) = f ϕk (3.9)

with f := (σ Pη(ϕk), ϕk). Thus, (3.6) and (3.9) together prove part (ii) of the theorem. �

We observe that the system (3.1)–(3.3) is not new and is in fact equivalent to the classical
system (2.16). We therefore focus our attention on the system (3.4) and (3.5) which is a new
Einstein–Dirac system.

Definition 3.1. A non-trivial spinor field ψ on (Qn,r , η), n ≥ 3, is called a CL-Einstein spinor
of type I (resp. type II) with characteristic function f if it is of constant length |ψ | = ±1 and
satisfies the system (1.9) and (1.10) (resp. (1.9) and (1.11)).

Remark 3.1. Let ϕ be a spinor field on (Qn,r , η) such that either (ϕ, ϕ) > 0 at all points or
(ϕ, ϕ) < 0 at all points. Let T1 and T2 be symmetric tensor fields induced by ϕ as in (1.10) and
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(1.11), respectively. Then, via direct computations, one finds that

div(T1)(X) = σ

n∑
i=1

χ(i)(∇Ei T1)(Ei , X)

= σ
(
(
√

−1)r∇X (Dϕ), ϕ
)

− σ
(
∇Xϕ, (

√
−1)r Dϕ

)
− σ

(
(
√

−1)r X · D2ϕ, ϕ
)

(3.10)

and

div(T2)(X) = σ
(
∇X (D

2ϕ), ϕ
)

− σ
(
∇Xϕ, D2ϕ

)
− σ

(
X · D3ϕ, ϕ

)
− (−1)rσ

(
X · D2ϕ, Dϕ

)
. (3.11)

(i) If (
√

−1)r Dϕ = f1ϕ for some function f1 : Qn,r
−→ R and ϕ is of constant length

|ϕ| = ±1, then

div(T1)(X) = 2d f1(X)(σϕ, ϕ) = 2d f1(X),

and so

div
(

1
4

T1 −
f1

2
η

)
= 0, (3.12)

which is required by the Einstein equation in (1.9).
(ii) Similarly, if D2ϕ = f2ϕ for some function f2 : Qn,r

−→ R and ϕ is of constant length
|ϕ| = ±1, then

div(T2)(X) = 2d f2(X)(σϕ, ϕ) = 2d f2(X),

and so

div
(

1
4

T2 −
f2

2
η

)
= 0. (3.13)

From (3.12) and (3.13) we see that the Einstein equation

a

{
Ric −

S

2
η

}
−

c

2
η =

ε

4
T −

ε

2
f η

of the CL-Einstein–Dirac equation (1.9) has a natural coupling structure. However, we should
note that neither (3.12) nor (3.13) holds in general, unless (ϕ, ϕ) is of constant length.

We can rewrite the CL-Einstein–Dirac equation of type I

(
√

−1)r Dψ = f1ψ, (3.14)

a

{
Ric −

S

2
η

}
−

c

2
η =

ε

4
T1 −

ε

2
f1η, (3.15)

where

T1(X, Y ) =

(
(
√

−1)r {X · ∇Yψ + Y · ∇Xψ}, ψ
)
, (3.16)

in an equivalent form. Since contracting both sides of (3.15) gives

ε(n − 1) f1 = a(n − 2)S + cn, (3.17)
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one checks that the system (3.14) and (3.15) is actually equivalent to the system

ε(
√

−1)r Dψ =

{
a(n − 2)

n − 1
S +

cn

n − 1

}
ψ (3.18)

and

a

{
Ric −

S

2(n − 1)
η

}
+

c

2(n − 1)
η =

ε

4
T1. (3.19)

Since the system (3.18) and (3.19) is similar to the classical Einstein–Dirac equation of type
I, we are led to an analogue of the WK-equation in Definition 2.2.

Definition 3.2. A non-trivial spinor field ψ on (Qn,r , η), n ≥ 3, is called a WW-spinor if ψ
satisfies the differential equation

∇Xψ = (
√

−1)3r
(

−
2a

ε

){
Ric(X)−

S

2(n − 1)
X +

c

2a(n − 1)
X

}
· ψ (3.20)

for some constants ε, a, c ∈ R, ε 6= 0, a 6= 0, and for all vector fields X .

Note that if the scalar curvature S of (Qn,r , η) is constant, then the WW-equation (3.20) is
equivalent to the WK-equation (2.17). Because of (2.10), the length |ψ | of any WW-spinor ψ is
constant. It follows that, by rescaling the length |ψ | if necessary, one may assume without loss
of generality that any WW-spinor ψ is of unit length |ψ | = ±1 or of zero length |ψ | = 0. As
any WK-spinor of positive (resp. negative) length is an Einstein spinor of type I, one then checks
that any WW-spinor ψ of unit length is a CL-Einstein spinor of type I.

4. Constructing solutions of the CL-Einstein–Dirac equation of type II

Let η1 and η2, η2 = euη1, be conformally equivalent metrics on Qn,r . By (2.3) there are
natural isomorphisms j : T (Q) −→ T (Q) and j : Σ (Q)η1 −→ Σ (Q)η2 preserving the inner
products of vectors and spinors as well as the Clifford multiplication:

η2( j X, jY ) = η1(X, Y ), 〈 jϕ1, jϕ2〉η2 = 〈ϕ1, ϕ2〉η1 ,

( j X) · ( jϕ) = j (X · ϕ), X, Y ∈ Γ (T (Q)), ϕ, ϕ1, ϕ2 ∈ Γ (Σ (Q)η1).

Denote by X := j (X) and ϕ := j (ϕ) the corresponding vector fields and spinor fields on
(Qn,r , η2), respectively. Then, for any spinor field ψ on (Qn,r , η1), we have

∇
η2

X
ψ = e−

u
2 ∇

η1
X ψ −

1
4
η2(X , gradη2

(u))ψ −
1
4

X · gradη2
(u) · ψ, (4.1)

Dη2ψ = e−
u
2 Dη1ψ +

n − 1
4

gradη2
(u) · ψ, (4.2)

(Dη2 ◦ Dη2)ψ = e−u(Dη1 ◦ Dη1)ψ −
1
2

e−
u
2 gradη2

(u) · Dη1ψ

−
n − 1

2
e−u

∇gradη1
(u)ψ +

(n − 1)2

16
|du|

2
η2
ψ +

n − 1
4

4η2
(u)ψ. (4.3)

Now consider a special class of spinors.
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Definition 4.1. A non-trivial spinor field ψ on (Qn,r , η), n ≥ 3, is called a weakly T-parallel
spinor with conformal factor u if it is of constant length |ψ | = ±1 and the equation

∇Xψ = −
1
4

du(X)ψ −
1
4
β(X) · grad(u) · ψ (4.4)

holds for all vector fields X , for a symmetric (1, 1)-tensor field β with

Tr(β) = n,

and for a real-valued function u : Qn,r
−→ R such that |du| has no zeros on an open dense

subset of Qn,r .

Note that ifψ is a parallel spinor on (Qn,r , η1), then the pullbackψ ofψ is a weakly T-parallel
spinor on (Qn,r , η2) with β= the identity map. In the following, we identify via the metric η any
exact 1-form “du” with the vector field “grad(u)” and (1, 1)-tensor field β with the induced (0,
2)-tensor field β(X, Y ) = η(X, β(Y )).

Proposition 4.1. Let (Qn,r , η) admit a weakly T-parallel spinor ψ solving Eq. (4.4). Then we
have

(i) β(du) = du,
(ii) ∇duψ = 0,

(iii) Dψ =
n−1

4 du · ψ ,

(iv) D2ψ = {
(n−1)2

16 |du|
2
+

n−1
4 4u}ψ , where 4 := −div ◦ grad,

(v) S =
1
4 {(n − 1)2 + 1 − |β|

2
}|du|

2
+ (n − 1)4u.

Proof. Since (σψ,ψ) = 1 is constant and β is symmetric,

0 = σ(∇Xψ,ψ) = −
1
4

du(X)+
1
4
η(β(X), grad(u)) = −

1
4

du(X)+
1
4
η(X, β(du)),

which proves part (i). Using (ii) and (iii), we compute

D2ψ =
n − 1

4
D(du · ψ) =

n − 1
4

4(u)ψ −
n − 1

2
∇duψ −

n − 1
4

du · Dψ

=

{
n − 1

4
4u +

(n − 1)2

16
|du|

2
}
ψ,

which proves part (iv). Substituting (iv) and (4.4) into the Schrödinger–Lichnerowicz formula
D2ψ = 4ψ +

S
4ψ , one proves part (v). �

Remark 4.1. It is remarkable that when Qn,r is a closed manifold, the function f2 =

(n−1)2

16 |du|
2
+

n−1
4 4u in part (iv) of Proposition 4.1 cannot be constant. Suppose f2 is a constant

and hence an eigenvalue of D2. Then f2 must be equal to a “positive” constant λ2 and for
metric η1 := e−uη, we have 4η1

(u) =
n−3

4 |du |
2
η1

+
4

n−1λ
2eu . The last relation is however a

contradiction, since the left-hand side becomes zero after integration.

Let ψ be a weakly T-parallel spinor on (Qn,r , η) solving Eq. (4.4). Then, a direct computation
gives
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ε

4
T2(X, Y ) =

εσ

4
(X · ∇Y (Dψ)+ Y · ∇X (Dψ),ψ)

+
εσ

4
(−1)r (X · ∇Yψ + Y · ∇Xψ, Dψ)

=
εσ (n − 1)

16
(X · ∇Y (du · ψ)+ Y · ∇X (du · ψ),ψ)

+
εσ (n − 1)

16
(−1)r (X · ∇Yψ + Y · ∇Xψ, du · ψ)

=
εσ (n − 1)

16
(X · ∇Y du · ψ + Y · ∇X du · ψ,ψ)

−
εσ (n − 1)

64
(X · du · {du(Y )ψ + β(Y ) · du · ψ}

+ Y · du · {du(X)ψ + β(X) · du · ψ} , ψ)

−
εσ (n − 1)

64
(−1)r (X · {du(Y )ψ + β(Y ) · du · ψ}

+ Y · {du(X)ψ + β(X) · du · ψ} , du · ψ)

= −
ε(n − 1)

8
η(X,∇Y du)−

ε(n − 1)
16

du(X)du(Y )+
ε(n − 1)

16
|du|

2β(X, Y ).

Guided by the last computation, one immediately proves:

Theorem 4.1. Let ψ be a weakly T-parallel spinor on (Qn,r , η) such that β and u are related to
the Ricci tensor and the scalar curvature of (Qn,r , η) by

|du|
2β(X, Y ) =

4
n − 2

{
Ric(X, Y )−

1
2

Sη(X, Y )

}
−

2c

a(n − 2)
η(X, Y )

+ 2η(X,∇Y (du))+ du(X)du(Y )

+

{
n − 1

2
|du|

2
+ 24u

}
η(X, Y ), (4.5)

where a, c ∈ R, a 6= 0, are real numbers. Then ψ becomes a solution of the CL-Einstein–Dirac
equation of type II (i.e., the system (1.9) and (1.11)), where the characteristic function f is given
by

f =
(n − 1)2

16
|du|

2
+

n − 1
4

4u

and the parameter ε should be chosen to satisfy

ε =
4a(n − 2)

n − 1
.

Definition 4.2. A non-trivial spinor field ψ on (Qn,r , η), n ≥ 3, is called a weakly parallel
spinor (briefly, WP-spinor) with conformal factor u if it is a weakly T-parallel spinor with
conformal factor u and satisfies (4.5) for some constants a, c ∈ R, a 6= 0.

Definition 4.3. A non-trivial spinor field ψ on (Qn,r , η), n ≥ 3, is called a reduced weakly
parallel spinor (briefly, reduced WP-spinor) with conformal factor u if it is of constant length
|ψ | = ±1 and the differential equation
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|du|
2
∇Xψ = −

1
n − 2

{
Ric(X)−

S

n
X

}
· du · ψ (4.6)

holds for all vector fields X and for a real-valued function u : Qn,r
−→ R with such properties

that |du| has no zeros on an open dense subset of Qn,r and eu is proportional to the scalar
curvature S, i.e.,

S = c∗eu, c∗
∈ R. (4.7)

Note that (4.6) generalizes the equation ∇Xψ = 0 for parallel spinors and that any reduced
WP-spinor ψ is a harmonic spinor Dψ = 0. Applying (4.6) to 0 = σ · |du|

2(∇Xψ,ψ), one
shows:

Proposition 4.2. Let (Qn,r , η) admit a reduced WP-spinor ψ with conformal factor u. Then

∇duψ = 0 and Ric(du) =
S

n
du.

We are going to prove that Eq. (4.5) for WP-spinors is conformally equivalent to Eq. (4.6)
for reduced WP-spinors. Consider conformally equivalent metrics η2 = euη1 on Qn,r . Let
(F1, . . . , Fn) be a local η1-orthonormal frame field on Qn,r . Then (F1 := e−

u
2 F1, . . . , Fn :=

e−
u
2 Fn) is η2-orthonormal. Since the Ricci tensors Ricη2 and Ricη1 are related by

Ricη2(F i , F j )− e−uRicη1(Fi , F j )

= −
n − 2

2
η2(F i ,∇

η2

F j
(gradη2

u))−
n − 2

4
du(F i )du(F j )

+
1
2

4η2
(u)η2(F i , F j )+

n − 2
4

|du|
2
η2
η2(F i , F j )

and the scalar curvatures Sη2 and Sη1 by

Sη2 − e−u Sη1 = (n − 1)4η2
(u)+

(n − 1)(n − 2)
4

|du|
2
η2
,

we have in particular the following formula.

Lemma 4.1.

Ricη2(F i , F j )−
1
2

Sη2η2(F i , F j )

= e−u
{

Ricη1(Fi , F j )−
1
2

Sη1η1(Fi , F j )

}
−

n − 2
2

η2(F i ,∇
η2

F j
(gradη2

u))−
n − 2

4
du(F i )du(F j )

−
n − 2

2
4η2

(u)η2(F i , F j )−
(n − 2)(n − 3)

8
|du|

2
η2
η2(F i , F j ).

Theorem 4.2. A non-trivial spinor field ψ on (Qn,r , η1) is a reduced WP-spinor with conformal
factor u if and only if the pullback ψ of ψ is a WP-spinor on (Qn,r , η2 = euη1) with conformal
factor u.

Proof. We first prove the necessity. Let ψ be a reduced WP-spinor on (Qn,r , η1) with conformal
factor u. In the notation of (4.1), we have
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|du|
2
η2

∇
η2

X
ψ

= −
1

n − 2
e−u

{
Ricη1(X)−

1
n

Sη1 X

}
· gradη2

(u) · ψ

−
1
4
|du|

2
η2
η2(X , gradη2

(u))ψ −
1
4
|du |

2
η2

X · gradη2
(u) · ψ

and hence

∇
η2

X
ψ = −

1
4
η2(X , gradη2

(u))ψ −
1
4
γ (X) · gradη2

(u) · ψ, (4.8)

where γ is a symmetric tensor field defined by

|du|
2
η2
γ (X , Y )

=
4

n − 2
e−u

{
Ricη1(X, Y )−

1
n

Sη1η1(X, Y )

}
+ |du|

2
η2
η1(X, Y ). (4.9)

On the other hand, using Lemma 4.1, we compute

Φ(X , Y ) :=
4

n − 2

{
Ricη2(X , Y )−

1
2

Sη2η2(X , Y )

}
−

2c

a(n − 2)
η2(X , Y )

+ 2η2(X ,∇
η2

Y
(gradη2

(u)))+ du(X)du(Y )

+

{
n − 1

2
|du|

2
η2

+ 2 4η2
(u)

}
η2(X , Y )

=
4e−u

n − 2

{
Ricη1(X, Y )−

1
2

Sη1η1(X, Y )−
ceu

2a
η1(X, Y )

}
+ |du|

2
η2
η1(X, Y ).

Choose the parameters a, c ∈ R such that the constant c∗ in (4.7) satisfies

c∗
= −

cn

a(n − 2)
.

Then Sη1 = −
cn

a(n−2)e
u and

Φ(X , Y ) = |du|
2
η2
γ (X , Y ). (4.10)

From (4.8)–(4.10), we conclude that ψ is a weakly T-parallel spinor on (Qn,r , η2 = euη1)

satisfying (4.5), i.e., ψ is a WP-spinor. In order to prove the sufficiency, we reverse the process
of the proof for the necessity. Let ψ be a WP-spinor on (Qn,r , η2 = euη1). Then we have

|du|
2
η2
β(X , Y )

=
4e−u

n − 2

{
Ricη1(X, Y )−

1
2

Sη1η1(X, Y )−
ceu

2a
η1(X, Y )

}
+ |du|

2
η2
η1(X, Y ).

Contracting both sides of this equation gives

Sη1 = −
cn

a(n − 2)
eu .

Using (4.1), one verifies that ψ satisfies Eq. (4.6) indeed. �
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5. An existence theorem for WK-spinors and that for reduced WP-spinors

We show that every parallel spinor may evolve to a WK-spinor (resp. a reduced WP-
spinor). We give a description for the evolution in a more general way than that given in
Section 5 of [7].

Let (Mn, gM ) be a Riemannian manifold, and let (R, gR) be the real line with the standard
metric. Let (Qn+1

= Mn
× R, η1 = gM + χ(n + 1)gR), χ(n + 1) = ±1, be the pseudo-

Riemannian product manifold. We will write gR = dt ⊗ dt using the standard coordinate t ∈ R
and regard η1 as a reference metric on Qn+1. Let (F1, . . . , Fn) denote a local η1-orthonormal
frame field on (Mn, gM ) as well as its lift to (Qn+1, η1). Let Fn+1 =

d
dt denote the unit vector

field on (R, gR) as well as the lift to (Qn+1, η1). We consider a doubly warped product of gM
and gR:

η2 = A2

(
n∑

i=1

F i
⊗ F i

)
+ χ(n + 1)B2dt ⊗ dt, (5.1)

where A = A(t), B = B(t) : R −→ R are positive functions on R and {F i
= η1(Fi , ·)} is the

dual frame field of {Fi }. Let gMt be the metric on slice Mt := Mn
× {t}, t ∈ R, of the foliation

(Qn+1
= Mn

× R, η1) induced by the reference metric η1, and let ∇
gMt be the Levi-Civita

connection. Then the Levi-Civita connection ∇
η2 of (Qn+1, η2) is related to ∇

gMt by

∇
η2

F i
F j = A−2

∇
gMt
Fi

F j − χ(n + 1)δi j B−2 A−1 At Fn+1, (5.2)

∇
η2

Fn+1
F j = ∇

η2

Fn+1
Fn+1 = 0, 1 ≤ i, j ≤ n, (5.3)

where (F1 := A−1 F1, . . . , Fn := A−1 Fn, Fn+1 := B−1 Fn+1) is a η2-orthonormal frame
field and At indicates the derivative At = dA(Fn+1). The second fundamental form Θη2 =

−∇
η2 Fn+1 of slice Mt is expressed as

Θη2(F j ) = −B−1 A−1 At F j , 1 ≤ j ≤ n. (5.4)

Furthermore, the Ricci tensor Ricη2 and the scalar curvature Sη2 of (Qn+1, η2) are related to the
Ricci tensor RicgMt

and the scalar curvature SMt of slice (Mt , gMt ) by

Ricη2(F i , F j ) = A−2RicgMt
(Fi , F j )− χ(n + 1)(n − 1)B−2 A−2 At Atδi j

+χ(n + 1){B−3 A−1 Bt At − B−2 A−1 At t }δi j , (5.5)

Ricη2(Fn+1, Fn+1) = nB−2 A−1(B−1 Bt At − At t ), (5.6)

Ricη2(F i , Fn+1) = 0, (5.7)

Sη2 = A−2SgMt
− χ(n + 1)n(n − 1)B−2 A−2 At At

+χ(n + 1)2n{B−3 A−1 Bt At − B−2 A−1 At t }, (5.8)

where At t = (At )t indicates the second derivative. From now on, we are interested in a special
case that the warping functions A and B are related by

B = (Ap)t = p Ap−1 At , p 6= 0 ∈ R. (5.9)
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Definition 5.1. A doubly warped product (5.1) is called a (Y)-warped product of (Mn, gM ) and
(R, gR) with warping function A and (Y)-factor p if the relation (5.9) is satisfied for some
constant p 6= 0 ∈ R.

Proposition 5.1. Let (Qn+1
= Mn

× R, η2) be a (Y)-warped product of (Mn, gM ) and (R, gR)
with warping function A and (Y)-factor p. Then the formulas (5.4)–(5.8) simplify to

(i) Θη2(F i , F j ) = −p−1 A−pδi j , 1 ≤ i, j ≤ n,

(ii) Ricη2(F i , F j ) = A−2RicgMt
(Fi , F j )+ χ(n + 1)(p − n)p−2 A−2pδi j ,

(iii) Ricη2(Fn+1, Fn+1) = n(p − 1)p−2 A−2p,
(iv) Ricη2(F i , Fn+1) = 0,
(v) Sη2 = A−2SgMt

+ χ(n + 1)n(2p − n − 1)p−2 A−2p.

An argument similar to that of Proposition 5.1 of [7] shows:

Proposition 5.2. Let (Qn+1
= Mn

× R, η2) be a (Y)-warped product of (Mn, gM ) and (R, gR)
with warping function A and (Y)-factor n

2 . Assume that (Mn, gM ) is Ricci-flat. Then the weak
Killing equation (2.17), in the case of b = 0, is equivalent to the system of differential
equations

∇
gMt
V ψ = 0 and ∇

η2

Fn+1
ψ = −(

√
−1)3rν1 Fn+1 · ψ +

1
2

TrgMt
(Θη2)ψ,

where V is an arbitrary vector field on Qn+1 with η2(V, Fn+1) = 0.

Proposition 5.3. Let (Qn+1
= Mn

× R, η2) be a (Y)-warped product of (Mn, gM ) and (R, gR)
with warping function A and (Y)-factor n+1

2 . Assume that (Mn, gM ) is Ricci-flat. Then the
reduced WP-equation in Definition 4.3 (in the case that we set u = − log A) is equivalent to
the system of differential equations

∇
gMt
V ψ = 0 and ∇

η2

Fn+1
ψ =

1
2

TrgMt
(Θη2)ψ,

where V is an arbitrary vector field on Qn+1 with η2(V, Fn+1) = 0.

Proof. Since u = − log A, we have

|du|
2
η2

= χ(n + 1)p−2 A−2p,

gradη2
(u) = −χ(n + 1)p−1 A−p Fn+1.

Moreover, by part (v) of Proposition 5.1, the scalar curvature Sη2 = 0 vanishes. Thus the reduced
WP-equation becomes

∇
η2
V ψ = −

1
n − 1

Ricη2(V ) ·
gradη2

(u)

|du|
2
η2

· ψ

=
p

n − 1
ApRicη2(V ) · Fn+1 · ψ

= −χ(n + 1)
1

n + 1
A−

n+1
2 V · Fn+1 · ψ (5.10)
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and

∇
η2

Fn+1
ψ = −

1
n − 1

Ricη2(Fn+1) ·
gradη2

(u)

|du|
2
η2

· ψ

= −
n

n + 1
A−

n+1
2 ψ =

1
2

TrgMt
(Θη2)ψ. (5.11)

On the other hand,

∇
η2
V ψ = ∇

gMt
V ψ + χ(n + 1)

1
2
Θη2(V ) · Fn+1 · ψ

= ∇
gMt
V ψ − χ(n + 1)

1
n + 1

A−
n+1

2 V · Fn+1 · ψ. (5.12)

From (5.10)–(5.12) we conclude the proof. �

Following a standard argument in the proof of Proposition 5.2 and Theorem 5.1 of [7] in
pseudo-Riemannian signature, we now establish the following existence theorems.

Theorem 5.1. Let (Qn+1
= Mn

× R, η2) be a (Y)-warped product of (Mn, gM ) and (R, gR)
with (Y)-factor n

2 . If (Mn, gM ) admits a parallel spinor, then for any real number λQ 6= 0,
(Qn+1, η2) admits a WK-spinor to WK-number (

√
−1)3rλQ , where r = 0 if χ(n + 1) = 1 and

r = 1 if χ(n + 1) = −1, respectively.

Theorem 5.2. Let (Qn+1
= Mn

× R, η2) be a (Y)-warped product of (Mn, gM ) and (R, gR)
with (Y)-factor n+1

2 . If (Mn, gM ) admits a parallel spinor, then (Qn+1, η2) admits a reduced
WP-spinor that is not a parallel spinor.

Theorem 5.1 above improves Theorem 5.1 of [7], since (Y)-warped products of (Mn, gM ) and
(R, gR) with (Y)-factor n

2 essentially generalize the metrics in Lemma 5.3 of [7].
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